Mixed messages from benthic microbial communities exposed to nanoparticulate and ionic silver: 3D structure picks up nano-specific effects, while EPS and traditional endpoints indicate a concentration-dependent impact of silver ions
نویسندگان
چکیده
Silver nanoparticles (AgNP) are currently defined as emerging pollutants in surface water ecosystems. Whether the toxic effects of AgNP towards freshwater organisms are fully explainable by the release of ionic silver (Ag(+)) has not been conclusively elucidated. Long-term effects to benthic microbial communities (periphyton) that provide essential functions in stream ecosystems are unknown. The effects of exposure of periphyton to 2 and 20 μg/L Ag(+) (AgNO3) and AgNP (polyvinylpyrrolidone stabilised) were investigated in artificial indoor streams. The extracellular polymeric substances (EPS) and 3D biofilm structure, biomass, algae species, Ag concentrations in the water phase and bioassociated Ag were analysed. A strong decrease in total Ag was observed within 4 days. Bioassociated Ag was proportional to dissolved Ag indicating a rate limitation by diffusion across the diffusive boundary layer. Two micrograms per liter of AgNO3 or AgNP did not induce significant effects despite detectable bioassociation of Ag. The 20-μg/L AgNO3 affected green algae and diatom communities, biomass and the ratio of polysaccharides to proteins in EPS. The 20-μg/L AgNO3 and AgNP decreased biofilm volume to about 50 %, while the decrease of biomass was lower in 20 μg/L AgNP samples than the 20-μg/L AgNO3 indicating a compaction of the NP-exposed biofilms. Roughness coefficients were lower in 20 μg/L AgNP-treated samples. The more traditional endpoints (biomass and diversity) indicated silver ion concentration-dependent effects, while the newly introduced parameters (3D structure and EPS) indicated both silver ion concentration-dependent effects and effects related to the silver species applied.
منابع مشابه
Impact of silver ions and silver nanoparticles on the plant growth and soil microorganisms
There is a growing consumer market for products that proclaim to decrease microorganism counts to prevent infections. Most of these products are loaded with silver in its ionic or nanoparticle form. Through use or during production, these particles can find their way into the soil and cause an impact in microbial and plant communities. This study aims to evaluate the impact of silver based part...
متن کاملToxicity of various silver nanoparticles compared to silver ions in the Ponto-Caspian amphipod Pontogammarus maeoticus (Sowinsky, 1894)
According to the increased probability of the presence of nanomaterials in the aquatic ecosystems, the present study examined the toxicity of three engineered silver nanoparticles (AgNPs) as well as silver ions in the Pontogammarus maeoticus, a brackish water benthic organism living in the littoral zone of the Caspian Sea. The animals were acutely exposed to different concentrations of two comm...
متن کاملEffect of silver nanoparticles on human mesenchymal stem cell differentiation
BACKGROUND Silver nanoparticles (Ag-NP) are one of the fastest growing products in nano-medicine due to their enhanced antibacterial activity at the nanoscale level. In biomedicine, hundreds of products have been coated with Ag-NP. For example, various medical devices include silver, such as surgical instruments, bone implants and wound dressings. After the degradation of these materials, or de...
متن کاملBio-fabrication of silver nanoparticles using Rosa Chinensis L.extract for antibacterial activities
The purpose of this study was to expand a trouble free biological method for the synthesis of silver nanoparticles (AgNPs) using the leaves extract of Rosa ChinensisL. to act as reducing and stabilizing agent. Water soluble phytochemicals played a vital role for the reduction silver ions into silver nanoparticles. The leaves extract was exposed to silver ions and the resultant biosynthesized Ag...
متن کاملBio-fabrication of silver nanoparticles using Rosa Chinensis L.extract for antibacterial activities
The purpose of this study was to expand a trouble free biological method for the synthesis of silver nanoparticles (AgNPs) using the leaves extract of Rosa ChinensisL. to act as reducing and stabilizing agent. Water soluble phytochemicals played a vital role for the reduction silver ions into silver nanoparticles. The leaves extract was exposed to silver ions and the resultant biosynthesized Ag...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 23 شماره
صفحات -
تاریخ انتشار 2016